

FDOT CAR PROJECT

Final Report Out

January 31, 2020

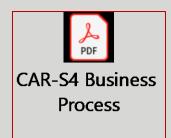
DELIVERABLES

This project was tasked with developing the following deliverables:

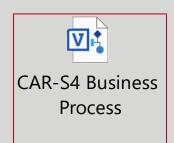
Start: Dec 4th

End: Jan 31st

Deliverables/Work Product	General Description
Crash Data Interviews –Crash Data Systems Work Product	Review current FDOT systems that utilize crash data
Signal Four System Review	Review the University of Florida Signal Four System
Crash Data Process Diagrams	Develop current state process flows for the process of taking Crash Data from intake to publishing
Crash Data Flow Diagrams	Develop current state data flows for the process of taking Crash Data from intake to publishing
Crash Data Recommendations	Develop actionable recommendations for process improvements, data quality, and data availability

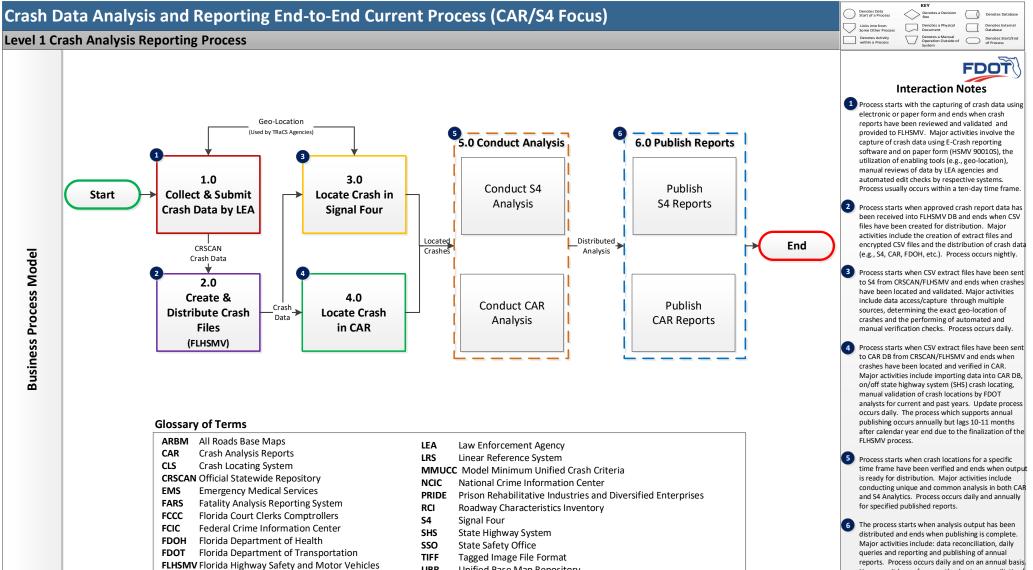


CONTENTS

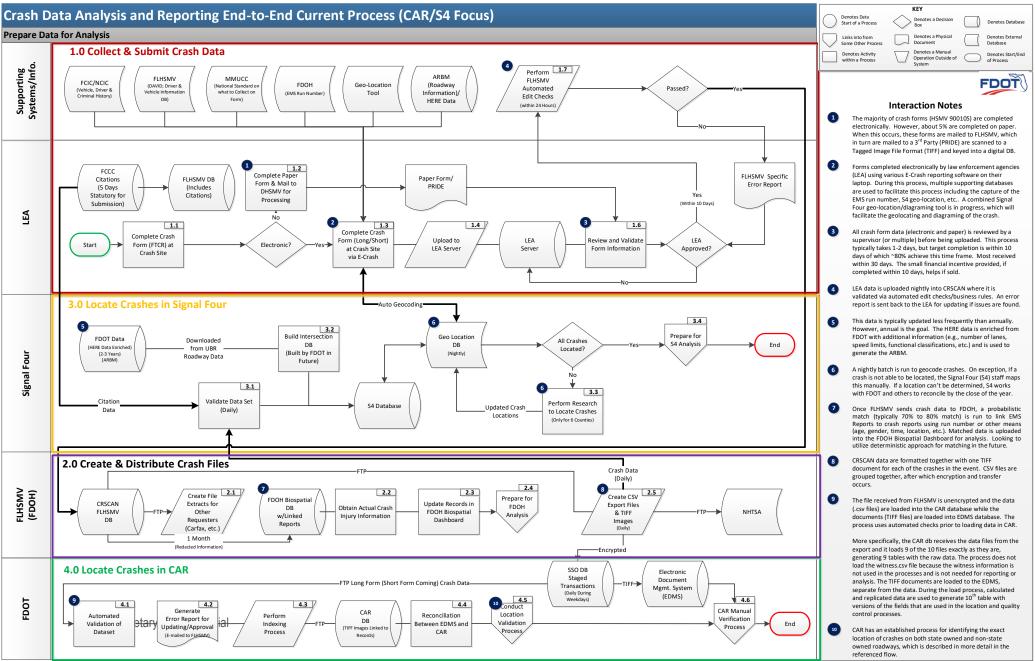


OVEVIEW OF DELIVERABLES	SLIDE#
CAR-S4 Business Process	 _ 4
Data Gap Assessment	 - 9
CAR-S4 Capability Assessment	 12
OVEVIEW OF WORK PRODUCT	
CAR-S4 Future State Business Model	 - 18
RECOMMENDATIONS	 - 20
APPENDIX	 - 30

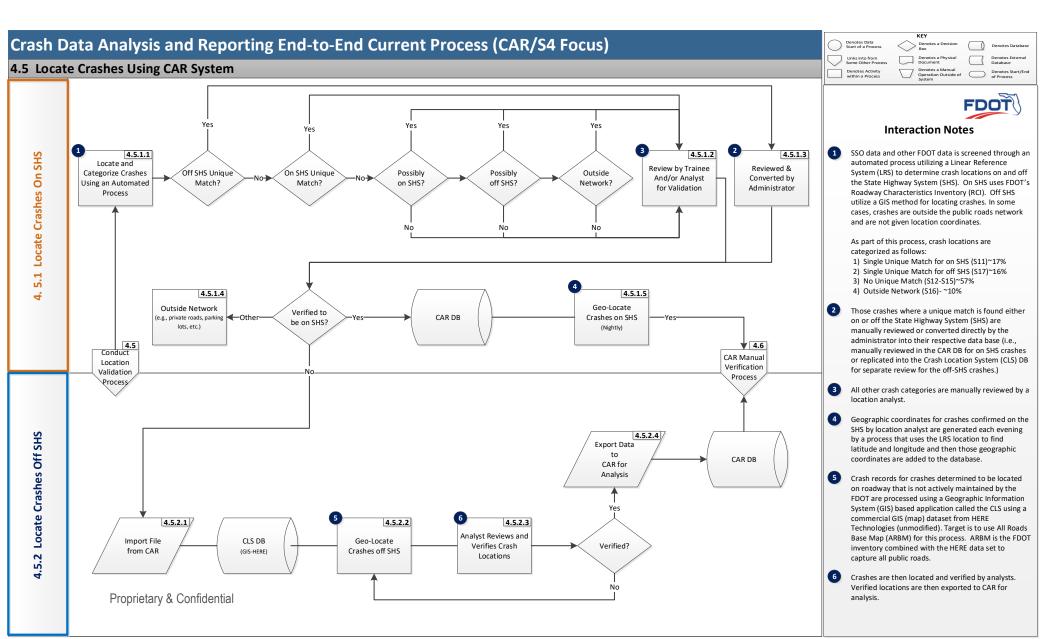
CAR-S4 CURRENT BUSINESS PROCESS


Proprietary & Confidential

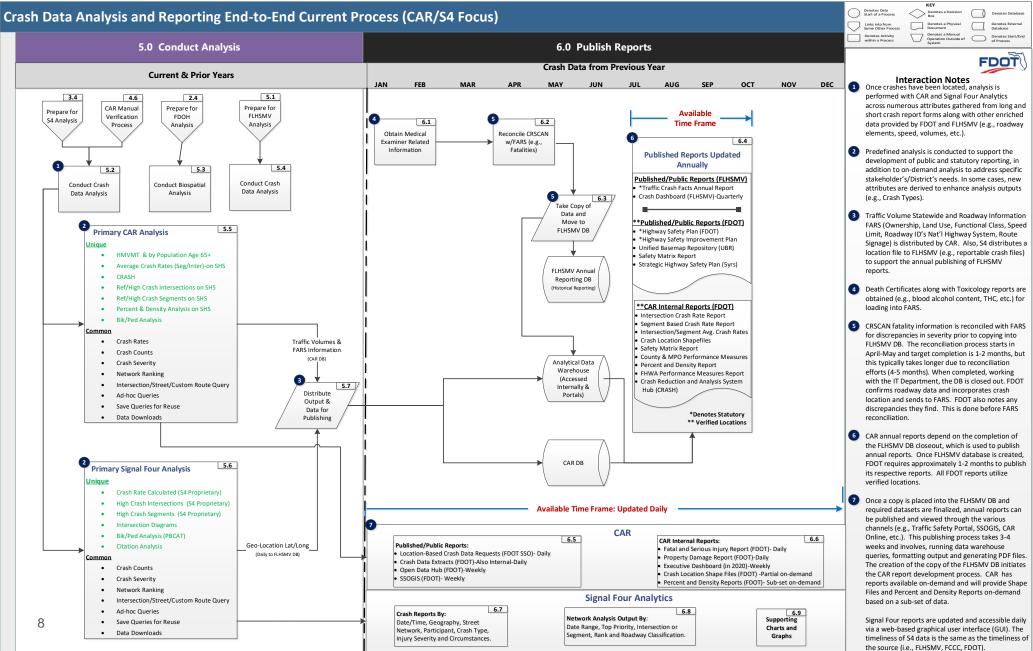
However, it lags a few months due to reconciliation/

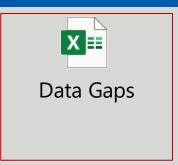

data management activities.

CURRENT CAR-S4 BUSINESS PROCESS



UBR Unified Base Map Repository


CURRENT CAR-S4 BUSINESS PROCESS



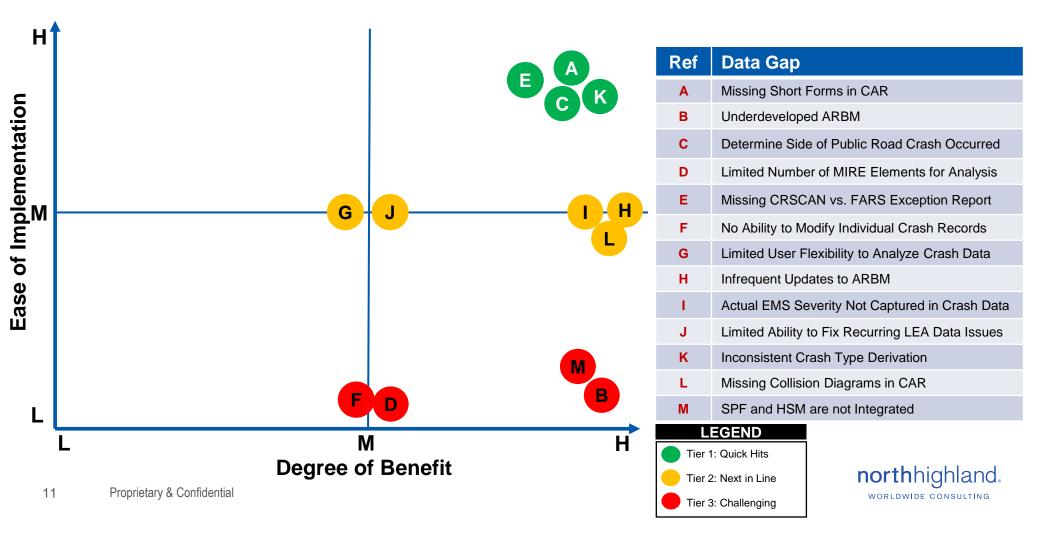
CURRENT CAR-S4 BUSINESS PROCESS

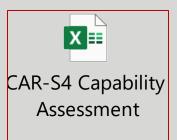
CURRENT CAR-S4 BUSINESS PROCESS

DATA GAP ASSESSMENT

DATA GAP ASSESSMENT

13 data gaps and their associated closure approaches have been Identified.


Ref	Data Gap	Owner	Closure Approach
Α	Missing Short Forms in CAR	FDOT	Use S4, leveraged with efficiency gains
В	Underdeveloped ARBM	FDOT	Contract ends 6/30/20. Redefine GIS/HERE requirements (FDOT and Safety)
С	Determine Side of Public Road Crash Occurred	FDOT	Use S4 and updated interface to add/maintain data. Pending NHTSA approval
D	Limited Number of MIRE Elements for Analysis	FDOT	Focus on Fundamental Data Elements (FDE) first, coordinate with other offices
E	Missing CRSCAN vs. FARS Exception Report	FLHSMV	Re-develop hack report. Bring on resource to support develop a report
F	No Ability to Modify Individual Crash Records	FLHSMV	Using manual approach, but need to ability to change within system
G	Limited User Flexibility to Analyze Crash Data	FLHSMV/FDOT	Lost some ability with Lexis/Nexis. Look at alternative enterprise solution
н	Infrequent Updates to ARBM	FDOT	Target annual updates utilizing additional CAR resource capacity
1	Actual EMS Severity Not Captured in Crash Data	FDOH	Coordinate with FDOH to obtain and map information into geolocation process
J	Limited Ability to Fix Recurring LEA Data Issues	FLHSMV	Work with LEA to establish a balanced process for updating at the source
К	Inconsistent Crash Type Derivation	FDOT	Understand current methodologies and standardize on one to use in S4
L	Missing Collision Diagrams in CAR	FDOT	Work with districts to enhance what's in S4 today
М	SPF and HSM are not Integrated	FDOT	Integrate SPF and HSM methods leveraging current Traffic Eng. & Ops analysis



DATA GAP ASSESSMENT

Ease of Implementation vs. Degree of Benefit

CAR-S4 CAPABILITY GAP ASSESSMENT

Summary of Analysis

- 1. A total of 86 Core Capabilities have been identified across Geolocating, Analytics and Roadway Reference category areas
- 2. A total of 18 gaps were identified with feasible Mitigation Approaches
- 3. The move to Signal Four will allow the organization to inherit additional geolocating and analysis core capabilities across (10)
- 4. Core Capabilities were concentrated in Crash Locating, Crash Analysis, Crash Reports and Crash Data Management (Ref. Appendix)
- 5. Most capabilities will align to Signal Four (32) and both systems (44) going forward, with CAR focusing on analysis (10) (Ref. Appendix)

18 capability gaps have been identified

Ref#	Area	Core Capability	Description	In CAR	In S4	Target System	Gap Reason
58	Analytics	Crash Analysis	Determine the "Crash Type" (derived)	Ν	Y	Both	Not done in CARS
64	Analytics	Crash Analysis	Conduct analysis around predefined points of interest (e.g., Schools, Hospitals, Fire Stations, Police Stations, etc.)	Ν	Y	Both	Part of Open Data Hub via web apps in CARS
65	Analytics	Crash Analysis	Generate "Crash Types" (derived) for analysis and highlight with various icons and tools tips for further explanation	N	Y	Both	CARS currently doesn't derive Crash Types
84	Analytics	Crash Analysis	Chart-based reporting dashboard	Ν	Y	S4	CARS currently does not do charting
4	Geolocation	Crash Locating	Automated crash locating on non-state roadways -	Y	Ρ	S4	Location limited to county and classification as "Off" State Highway System
5	Geolocation	Crash Locating	Manual crash locating on non-state roadways	Y	Y	S4	Using two systems and would like to use one (i.e., S4). Need to streamline
78	Geolocation	Crash Locating	Additional data collected during location review process, both analyst-generated and derived from base map	Y	N	S4	Not done in S4
38	Geolocation	Crash Locating	Automated crash locating on non-state roadways	Ν	Y	S4	Doesn't do this automatically. This is manual in CARS
8	Analytics	Crash Data Management	Add or update individual crash records, including notes	Y	Ρ	Both	S4 not able to capture notes. CAR does, but this for internal purposes for geo-location purposes to justify/explain decisions.

18 capability gaps have been identified -Cont'd

Ref#	Area	Core Capability	Description	In CAR	In S4	Target System	Gap Reason
80	Geolocation	Crash Data Management	Ad hoc reporting capabilities, that can be used to populate reporting tables in the FDOT database	Ν	Ν	S4	Targeted future functionality
81	Analytics	Crash Data Management	An export of crash location and reference data to be loaded in the FDOT database	Ν	N	S4	Targeted future functionality
7	Analytics	Crash Viewing	View crashes for State Highway System on-line at detailed and summary levels	Y	Ρ	Both	S4 does detail, but not summary
63	Analytics	GUI for Analysis	Use GUI for defining a custom geographic area for analysis by selecting or drawing a search area around the area of interest and save for later reuse	Ρ	Y	Both	CARS has ability to draw this in SSOGIS, but it can not be saved since this is public.
77	Geolocation	Interactive geocoding	Ability to edit the location type (intersection/segment/ramp/off roadway)	Ρ	Y	S4	Want to use the web-based tool for this for CAR
79	Geolocation	Interactive geocoding	Store both the point at the absolute location and the point on the street centerline	Ν	Y	S4	Not done in CAR
32	Roadway Reference	RCI Management	Extract, transform and load relevant RCI inventory fields for roadway data reference during CAR system location processing	Y	N	ARBM/S4	Would like to use ARBM in S4. This is an ARBM gap
33	Roadway Reference	RCI Management	Archive (Freeze) RCI inventory ETL fields for roadway data reference during CAR system location processing for previous years using the RCI for that year	Y	N	ARBM/S4	Would like to use ARBM in S4
30	Roadway Reference	Route Sequencing	Identify, for all state-maintained roadways, the sequence in	Y	N	ARBM/S4	Would like to use ARBM in S4

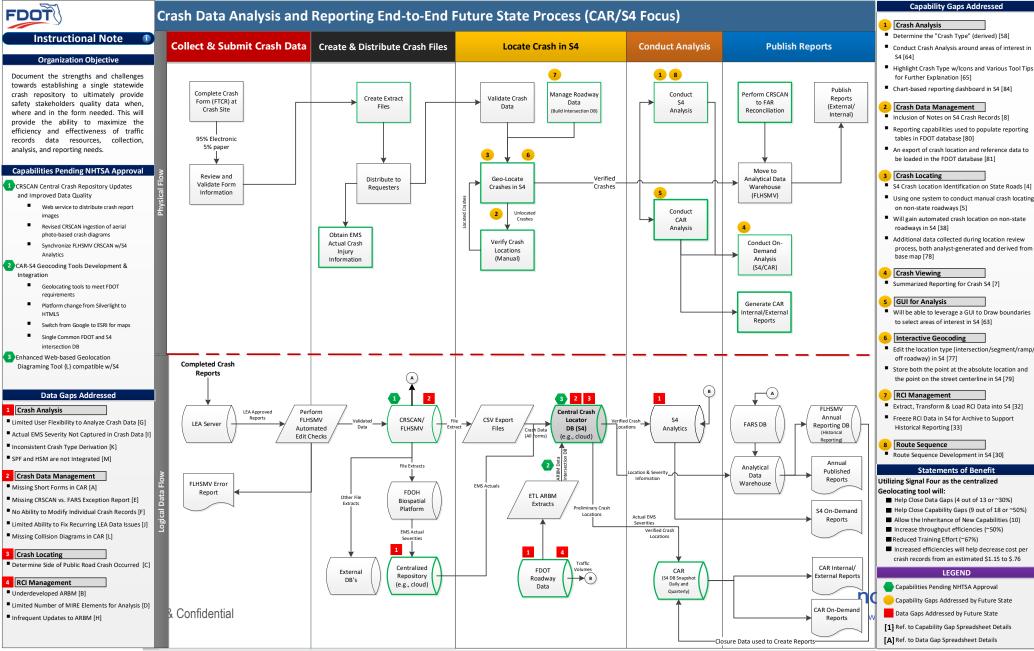
10 new capabilities will be inherited with the integration

Ref#	Area	Core Capability	Description	In CAR	In S4	Target System
55	Analytics	Charting	Chart crash data within the application to support analysis	N	Y	S4
85	Analytics	Citation Analysis	Mapping, query, charting, reports and data export for citations	Ν	Y	S4
76	Analytics	Crash Analysis	Network analysis based on link ID crash rates, severity and crash counts	Ν	Y	S4
61	Analytics	Crash Analysis	Automatically conduct crash analysis by city	Ν	Y	Both
40	Analytics	Crash Data Mgmt.	Conduct analysis using both long and short form crash data - POSSIBLE WITH CAR FOR STATE HIGHWAY SYSTEM, BUT SHORT FORMS NOT IN CAR DB	Ν	Y	S4
47	Geolocation	Crash Reports	Generate statistical reports detailing the success rate and confidence level of automatic batch geocoding	Ν	Y	S4
48	Geolocation	Crash Reports	Generate statistical reports detailing use of the Geolocation Service by vendor and reporting agency	Ν	Y	S4
74	Analytics	Export Output	Bike/Ped crash type detail (PBCAT)	Ν	Y	S4
62	Analytics	GUI for Analysis	Use a GUI for adding or removing segments for analysis	Ν	Y	S4
57	Analytics	Print Output	Print out analysis, charts or maps to files (including PDF's)	Ν	Y	S4

BENEFITS OF UTILIZING SIGNAL FOUR

Utilizing Signal Four as the centralized Geolocating tool will:

- 1. Help Close Data Gaps (4 out of 13 or ~30%)
- 2. Help Close Capability Gaps (9 out of 18 or ~50%)
- 3. Allow the Inheritance of new Geo-Locating and Analysis Capabilities (10)
- 4. Increase throughput efficiencies (~50%)
- 5. Decrease cost per crash record from an estimated \$1.15 to \$.76



CAR-S4 INTERIM FUTURE STATE BUSINESS MODEL

CAR-S4 INTERIM FUTURE STATE BUSINESS MODEL

- 1. Consolidate crash location process into a single platform $\overline{\Im}$
- 2. Establish a cross-organizational task group charged with the implementation of the portfolio of quick hits regarding Data and Capability Gaps
- 3. Establish organizational governance structure for the future of Signal 4
- 4. Dedicate the required resources to maintain the All Roads Base Map (ARBM)
- 5. Need to expand the Model Inventory of Roadway Elements (MIRE) currently captured
- 6. Develop a single accessible repository for all Crash related data for the safety stakeholders
- 7. Define user needs for data analysis and reporting

🗱 = Project Inflight

Provides a single source for crash location both preliminary and verified

Benefits

2. Streamlines the verified location process by ~ 50%

RECOMMENDATIONS

a. Decrease cost per crash record from \$1.15 to \$0.76

Consolidate crash location process into a single platform

- 3. Eliminates location variances across multiple systems
- Modernizes the FDOT tools used to locate crashes and simplifies the process and reduces the training required by 67%
- 5. Help close 30% of identified data gaps and 50% of identified capability gaps

Challenges

- Since not all CAR functionality will move to Signal 4, a version of CAR will still need to be maintained and interface with Signal 4
- CAR Verification workflow does not currently exist in Signal 4
- Need to determine what, if any, data needs to be converted from CAR to Signal 4 (e.g., roadway data, verified location)
- Need to go back 5 years and validate location of short forms

Next Steps

- Currently pending NHTSA approval
- Initiate project with Signal 4
- Define requirements for current CAR verification workflow
- Develop approach for data migration and determine any required pre-migration activities
- Coordinate with the CAR Rewrite project and set a milestone to determine best location for current CAR analysis functionality

Timeline

• Start within the next 3 months

Establish a cross-organizational task group charged with the implementation of the portfolio of quick hits regarding Data and Capability Gaps

Benefits

Determine Side of Public Road Crash Occurred [C]

1. Provides necessary data for safety analysis

Missing CRSCAN vs. FARS Exception Report [E]

- 1. Could save 25-30 business days in the annual FLHSMV closeout process
- 2. Allows FDOT to begin developing annual reports faster
- Inconsistent Crash Type Derivation [K]
- 1. Standardizes crash type across all stakeholders and systems

Challenges

- Will need to coordinate with other initiatives already in progress
- <u>_!</u>
- All impacted agencies will need to commit the time and resources to participate
- The reconciliation process and business rules for CRSCAN and FARS are complex
- Signal 4 does not currently determine side of road for crashes

Next Steps

· Identify cross agency team to focus quick hits

- Prioritize quick hits and develop schedule to address each
- Once quick hit items are complete, move on to tier 2 gaps

Timeline

• Start within the next 3 months

23 Proprietary & Confidential

Establish organizational governance structure for the future of Signal 4

Benefits

- 1. Ensures decisions can be made timely with input from all impacted stakeholders
- 0000
- 2. Clearly defines roles and responsibilities for the future of Signal 4 operations and maintenance
- 3. Effective governance provides:
 - a. Continuous alignment with program strategy
 - b. Optimized utilization of resources
 - c. Tracking and monitoring of project delivery
 - d. Identification, assessment, and mitigation of risks

Challenges

• All impacted agencies will need to commit the time and resources to participate

Next Steps

- Establish the goals and objectives of governance and the expectations for all agencies
- Obtain leadership buy-in and support
- Define the operating requirements for the governance model
- Factor in any applicable regulatory, governance or legal requirements
- Define governance guiding principles
- Design the governance structure

Timeline

• Start within the next 3 months

Dedicate the required resources to maintain the All Roads Base Map (ARBM)

Benefits

1. ARBM is currently used by Signal 4 to tie location data to the roadway. The ARBM is updated every 2 years currently. Updating the ARMB annually, at minimum, will ensure more accurate location data.

Next Steps

- Identify additional resources that can support the maintenance of ARBM
- Inventory all Data Sets currently being maintain to understand what FDOT is currently spending to maintain multiple data sets
- Assess the ability to consolidate into a single data set for all FDOT needs

Challenges

- Currently there is only a single FDOT resource that maintains the ARBM
- $\sum !$
- Currently RCI data and HERE data conflation process is time intensive because there is not a common geometry used between the two
- HERE contract is proprietary and not shareable to the public

Timeline

• Start within the next 3 months

Need to expand the Model Inventory of Roadway Elements (MIRE) currently captured

Benefits

- 1. Additional data would help identify more effective safety counter measures
- 2. Aligns to FHWA guidance

Next Steps

- Focus on a sub-set of MIRE that are used for fundamental safety analysis first
- Coordinate with the IRAIS/ESRI Roads and Highways project

Challenges

- · Limited resources to make changes
- · Changes would be needed in RCI and HERE data
- Coordination with other offices in FDOT that collect and use the data is needed

Timeline

• Start within the next 6-12 months

Develop a single accessible repository for all Crash related data for the safety stakeholders

Benefits

- 1. Ensures data that is enhanced by a crash data stakeholders is distributed to all users
 - a. Example: Validated location data from FDOT could be provided to FLHSMV, DOH, and the public
 - b. Example: Linked EMS data could be provided to FLHSMV and FDOT, to increase the accuracy of injury severity
- 2. Eliminates the duplication of data across agencies

Next Steps

- Define single repository architecture design for all Traffic Record Systems
- Define multi-agency data model for single repository
 - Synchronize definitions across Crash data stakeholders
- Review potential cloud options for a centralized repository
- Develop a pilot using the current Signal 4 and EMS data as a proof of concept
 - Establish success criteria for pilot

Challenges

- Need to determine who would own own and maintain the centralize repository (data governance)
- Define table/field level access and security requirements for each agency to limit access to only required data

Timeline

- Planning Start in next 3 months
- Detailed Design, Development, and Implementation Start in 12+ month

Define user needs for data analysis and reporting

Benefits

- 1. Provides more real time access to crash data for analysis
- 2. Ensures stakeholder reporting needs are met
- 3. Identify unmet reporting and analysis needs

Next Steps

- Decision driven approach for report/query development: Understand the decisions being made across the organization and the information/knowledge needed to address these
- Performance Management Driven: Understand the current metrics, identify new ones and ensure the reporting supports those needs
- · Establish quality levels for interim reports and verified report
- Determine data sharing methods
- Coordinate with Signal 4 around current reporting and analysis efforts

Timeline

• Start within the next 3 months

northhighland.

Challenges

- Need to identify all impacted stakeholder groups and reporting needs
- All impacted agencies will need to commit the time and resources to participate
- Some data may have restrictions on how it can be shared

TIMELINE

0-3

6 – 12 Months

 Need to expand the Model Inventory of Roadway Elements (MIRE) currently captured

6-12

12+

Next 3 Month

Consolidate crash location process into a single platform

 Establish a cross-organizational task group charged with the implementation of the portfolio of quick hits regarding Data and Capability Gaps

- Establish organizational governance structure for the future of Signal 4
- Dedicate the required resources to maintain the All Roads Base Map (ARBM)
- Develop a single accessible repository for all Crash related data for the safety stakeholders (Planning)
- · Define user needs for data analysis and reporting

12 + Months

• Develop a single accessible repository for all Crash related data for the safety stakeholders (Design, Develop, Implement)

Right Click and select "Format Background" to insert background image from file

APPENDIX

Capability Gap Assessment Supporting Tables

northhighland.

CAPABILITY GAP ASSESSMENT

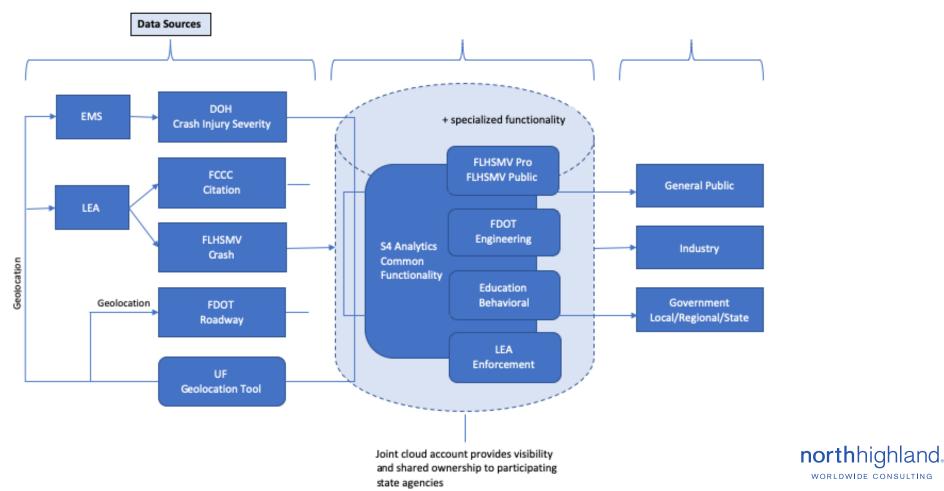
86 capabilities have been identified across the three core areas listed below

Geo-Locating (22)	Analytics (52)	Roadway Reference (12)
Automated Geocoding (1)	Charting (1)	Alias Names (2)
Crash Data Management (2)	Citation Analysis (1)	Crash Data Management (2)
Crash Locating (9)	Crash Analysis (16)	Node Management (2)
Crash Reports (2)	Crash Data Management (7)	RCI Management (4)
Interactive Editing (4)	Crash Rate Confidence (1)	Route Sequencing (2)
Interactive Geocoding (4)	Crash Reports (10)	
	Crash Viewing (2)	
	Export Output (2)	
	GUI for Analysis (2)	
	GUI for Queries (1)	
	Map-Based Analytics (3)	
	Print Output (1)	
	Query Management (3)	
	Subset Creation (1)	
	User Management (1)	

northhighland.

CAPABILITY GAP ASSESSMENT

Core Capabilities align across CAR and Signal Four as reflected


CAR (10)	Signal Four (32)	Both (44)
ARBM (3)	Automated Geocoding (1)	<mark>Crash Analysis (8)</mark>
Crash Analysis (5)	Citation Analysis (1)	Crash Data Management (6)
Crash Reports (1)	Crash Analysis (3)	Crash Reports (9)
Crash Rate Confidence (1)	Crash Locating (7)	Crash Viewing (2)
	Crash Data Management (2)	Export Output (1)
	Crash Reports (2)	GUI for Analysis (1)
	Interactive Editing (4)	GUI for Queries (1)
	Interactive Geocoding (4)	Map-Based Analytics (3)
	Charting (1)	Query Management (3)
	GUI Analysis (1)	Subset Creation (1)
	Map Based Analytics (1)	User Management (1)
	Print Output (1)	Alias Names (2)
	GUI for Analysis (1)	Node Management (1)
	Map-Based Analytics (3)	RCI Management (3)
		Route Sequencing (2)

WORLDWIDE CONSULTING

SIGNAL 4 VISION

Florida Cloud-Based Traffic Safety Information System (Phase I)

33